22 research outputs found

    Sustainable manufacturing and parametric analysis of mild steel grade 60 by deploying CNC milling machine and Taguchi method

    Get PDF
    Design and manufacturing are the key steps in the sustainable manufacturing of any product to be produced. Within the perspective of injection molds production, increased competitiveness and repeated changes in the design require a complete optimized manufacturing process. Local and minor improvements in the milling process do not generally lead to an optimized manufacturing process. The goal of the new geometry and parametric analysis of the mould is to reduce the quality issues in mild steel grade 60. In this explicit research, the surface roughness (smoothness) of indigenously produced injection moulds in the local market in Pakistan is investigated. The CNC milling machine (five-axis) is used for the manufacturing of an injection mould, and the Taguchi method of the design of the experiment is applied for parameters optimization. Hence, the overall process is assisted in balancing the milling machine parameters to trim down the surface roughness issue in mild steel moulds and increase their sustainability. The spindle speed (rpm), the depth of cut (mm), and the feed rate (mm/rev) are considered as input variables for process optimization, and the experiments are performed on mild steel grade 60. It is deduced that the combination of a spindle speed of 800 rpm, feed rate of 10 mm/rev and depth of cut of 0.5 mm is the best case in case of minimum surface roughness, which leads to sustainable products. It is also deduced from ANOVA, that the spindle speed is a factor that affects the surface roughness of mild steel products, while the feed rate turns out to be insignificant

    Application of exact and multi-heuristic approaches to a sustainable closed loop supply chain network design

    Get PDF
    Closed-loop supply chains (CLSC) are gaining popularity due to their efficiency in addressing economic, environmental, and social concerns. An important point to ponder in the distribution of CLSC is that imperfect refrigeration and bad road conditions may result in product non-conformance during the transit and thus such products are to be returned to the supply node. This may hinder the level of customer satisfaction. This paper presents a sustainable closed-loop supply chain framework coupled with cross-docking subject to product non-conformance. A cost model is proposed to investigate the economic and environmental aspects of such systems. The transportation cost is analyzed in terms of total carbon emissions. A set of metaheuristics are administered to solve the model and a novel lower bound is proposed to relax the complexity of the proposed model. The results of different size problems are compared with the branch and bound approach and the proposed lower bound. The results indicate that the proposed research framework, mathe-matical model, and heuristic schemes can aid the decision-makers in a closed-loop supply chain context

    Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Post-partum haemorrhage is the leading cause of maternal death worldwide. Early administration of tranexamic acid reduces deaths due to bleeding in trauma patients. We aimed to assess the effects of early administration of tranexamic acid on death, hysterectomy, and other relevant outcomes in women with post-partum haemorrhage. Methods In this randomised, double-blind, placebo-controlled trial, we recruited women aged 16 years and older with a clinical diagnosis of post-partum haemorrhage after a vaginal birth or caesarean section from 193 hospitals in 21 countries. We randomly assigned women to receive either 1 g intravenous tranexamic acid or matching placebo in addition to usual care. If bleeding continued after 30 min, or stopped and restarted within 24 h of the first dose, a second dose of 1 g of tranexamic acid or placebo could be given. Patients were assigned by selection of a numbered treatment pack from a box containing eight numbered packs that were identical apart from the pack number. Participants, care givers, and those assessing outcomes were masked to allocation. We originally planned to enrol 15 000 women with a composite primary endpoint of death from all-causes or hysterectomy within 42 days of giving birth. However, during the trial it became apparent that the decision to conduct a hysterectomy was often made at the same time as randomisation. Although tranexamic acid could influence the risk of death in these cases, it could not affect the risk of hysterectomy. We therefore increased the sample size from 15 000 to 20 000 women in order to estimate the effect of tranexamic acid on the risk of death from post-partum haemorrhage. All analyses were done on an intention-to-treat basis. This trial is registered with ISRCTN76912190 (Dec 8, 2008); ClinicalTrials.gov, number NCT00872469; and PACTR201007000192283. Findings Between March, 2010, and April, 2016, 20 060 women were enrolled and randomly assigned to receive tranexamic acid (n=10 051) or placebo (n=10 009), of whom 10 036 and 9985, respectively, were included in the analysis. Death due to bleeding was significantly reduced in women given tranexamic acid (155 [1·5%] of 10 036 patients vs 191 [1·9%] of 9985 in the placebo group, risk ratio [RR] 0·81, 95% CI 0·65–1·00; p=0·045), especially in women given treatment within 3 h of giving birth (89 [1·2%] in the tranexamic acid group vs 127 [1·7%] in the placebo group, RR 0·69, 95% CI 0·52–0·91; p=0·008). All other causes of death did not differ significantly by group. Hysterectomy was not reduced with tranexamic acid (358 [3·6%] patients in the tranexamic acid group vs 351 [3·5%] in the placebo group, RR 1·02, 95% CI 0·88–1·07; p=0·84). The composite primary endpoint of death from all causes or hysterectomy was not reduced with tranexamic acid (534 [5·3%] deaths or hysterectomies in the tranexamic acid group vs 546 [5·5%] in the placebo group, RR 0·97, 95% CI 0·87-1·09; p=0·65). Adverse events (including thromboembolic events) did not differ significantly in the tranexamic acid versus placebo group. Interpretation Tranexamic acid reduces death due to bleeding in women with post-partum haemorrhage with no adverse effects. When used as a treatment for postpartum haemorrhage, tranexamic acid should be given as soon as possible after bleeding onset. Funding London School of Hygiene & Tropical Medicine, Pfizer, UK Department of Health, Wellcome Trust, and Bill & Melinda Gates Foundation

    Hybrid Particle Swarm Algorithm for Products’ Scheduling Problem in Cellular Manufacturing System

    No full text
    Industries have to produce high quality products with low cost because of the competitive environment and customer demand. To cope with the increasing demand of customized products at low cost, the concept of cellular manufacturing systems (CMS) has been introduced under the umbrella of lean manufacturing. Industries are facing three major problems in CMS; selection of product families, cell formation and products scheduling. This paper deals with the products scheduling problem in CMS. As it is a non-deterministic polynomial-time (NP) hard problem, a hybrid particle swarm optimization algorithm with Nawaz, Enscore, Ham-NEH (NEPSO) embedded with local search is proposed to find optimized sequence results for two conflicting performance measures (work in process and machine cell utilization). Here, particle swarm optimization (PSO) is integrated with an NEH algorithm to quickly achieve better optimal sequence. For this purpose, the solution obtained from the NEH algorithm is used as a seed for PSO optimization. A mathematical model is presented for conflicting performance measures; minimization of work in process (WIP) and maximization of average machine cell utilization. A case study of automotive manufacturing cells was conducted. Results of the NEPSO were compared with the existing method, standard PSO, genetic algorithm (GA), and NEH algorithm, showing that the NEPSO performed better in term of problem optimization of the cellular layouts

    An Agricultural Products Supply Chain Management to Optimize Resources and Carbon Emission Considering Variable Production Rate: Case of Nonperishable Corps

    No full text
    The management of the man–machine interaction is essential to achieve a competitive advantage among production firms and is more highlighted in the processing of agricultural products. The agricultural industry is underdeveloped and requires a transformation in technology. Advances in processing agricultural products (agri-product) are essential to achieve a smart production rate with good quality and to control waste. This research deals with modelling of a controllable production rate by a combination of the workforce and machines to minimize the total cost of production. The optimization of the carbon emission variable and management of the imperfection in processing makes the model eco-efficient. The perishability factor in the model is ignored due to the selection of a single sugar processing firm in the supply chain with a single vendor for the pragmatic application of the proposed research. A non-linear production model is developed to provide an economic benefit to the firms in terms of the minimum total cost with variable cycle time, workforce, machines, and plant production rate. A numerical experiment is performed by utilizing the data set of the agri-processing firm. A derivative free approach, i.e., algebraic approach, is utilized to find the best solution. The sensitivity analysis is performed to support the managers for the development of agricultural product supply chain management (Agri-SCM)

    An agricultural products supply chain management to optimize resources and carbon emission considering variable production rate:Case of nonperishable corps

    No full text
    The management of the man–machine interaction is essential to achieve a competitive advantage among production firms and is more highlighted in the processing of agricultural products. The agricultural industry is underdeveloped and requires a transformation in technology. Advances in processing agricultural products (agri-product) are essential to achieve a smart production rate with good quality and to control waste. This research deals with modelling of a controllable production rate by a combination of the workforce and machines to minimize the total cost of production. The optimization of the carbon emission variable and management of the imperfection in processing makes the model eco-efficient. The perishability factor in the model is ignored due to the selection of a single sugar processing firm in the supply chain with a single vendor for the pragmatic application of the proposed research. A non-linear production model is developed to provide an economic benefit to the firms in terms of the minimum total cost with variable cycle time, workforce, machines, and plant production rate. A numerical experiment is performed by utilizing the data set of the agri-processing firm. A derivative free approach, i.e., algebraic approach, is utilized to find the best solution. The sensitivity analysis is performed to support the managers for the development of agricultural product supply chain management (Agri-SCM).</p

    An Integrated Approach of GRA Coupled with Principal Component Analysis for Multi-Optimization of Shielded Metal Arc Welding (SMAW) Process

    No full text
    Welding distortion is a critical issue as it leads to severe deterioration of structural integrity of welded work piece and dimensional precision. This study aims at studying the effects of shielded metal arc welding (SMAW) parameters on the evolution of mechanical properties, including tensile strength, impact toughness, and hardness, along with angular distortion on a welded joint from SA 516 grade 70. Such parameters are analyzed and optimized by employing the Taguchi method and Grey relational analysis. SA 516 grade 70 is commercially used for fabrication of storage tanks, boilers and pressure vessels. SMAW is investigated with three levels of root gap, groove angle, electrode diameter, and pre-heat temperature, which were varied on a butt joint in flat (1 G) position to determine their effects on response variables at room temperature. Nine experiments were designed using a Taguchi L9 orthogonal array, welded according to American Society of Mechanical Engineers (ASME) section IX, and samples were prepared and tested as per ASTM A 370. The Taguchi method and Grey relational analysis were employed to observe the most significant parameters and optimal levels that synergically yield improved responses. Results are validated by conducting confirmatory experiments that show good agreement with optimum results

    Experimental Characterization of Electrical Discharge Machining of Aluminum 6061 T6 Alloy using Different Dielectrics

    No full text
    Electrical discharge machining is a non-traditional machining method broadly employed in industries for machining of parts that have typical profiles and require great accuracy. This paper investigates the effects of electrical parameters: pulse-on-time and current on three performance measures (material removal rate, microstructures and electrode wear rate), using distilled water and kerosene as dielectrics. A comparison between dielectrics for the machining of aluminum 6061 T6 alloy material in terms of performance measures was performed. Aluminum 6061 T6 alloy material was selected, because of its growing use in the automotive and aerospace industrial sectors. The experimental sequence was designed using Taguchi technique of L-9 orthogonal array by changing three levels of pulse-on-time and current, and test runs were performed separately for each dielectric. The results obtained show that greater electrode wear rate (EWR) and higher material removal rate (MRR) were achieved with distilled water when compared with kerosene. These greater EWR and MRR responses can be attributed to the early breakage of the weak oxide and carbide layers formed on the tool and alloy material surfaces, respectively. The innovative contributions of this study include, but are not limited to, the possibility of machining of aluminum 6061 T6 alloy with graphite electrode to enhance machinability and fast cutting rate employing two different dielectrics

    HYBRID PARTICLE SWARM ALGORITHM FOR SCHEDULING IN CELLULAR MANUFACTURING SYSTEM- A CASE STUDY

    No full text
    Cellular Manufacturing System (CMS) lies in the heart of lean manufacturing with goal of producing the wide variety of products as efficiently as possible. Increase in customer demand for more customized products had forced industries to shift to CMS. Once CMS has been established scheduling becomes one of the challenging task. So, in present work, a real case study based on scheduling problem in CMS is presented and a hybrid particle swarm optimization (PSO) algorithm is proposed to achieve an optimize sequence. The PSO is integrated with NEH algorithm to achieve an optimal sequence faster. A mathematical model is presented to evaluate two conflicting performance measures; minimization of work in process (WIP) and maximization of average machine cell utilization. Implementation of proposed algorithm had increased the utilization from 65% to 82 % while minimized the WIP to 6 parts from 25parts

    Percutaneous Transhepatic Biodegradable Stent Placement for Benign Anastomotic Biliary Strictures: Short-Term Outcomes of a Single-Institution Experience

    No full text
    Purpose: The purpose of this study was to assess the safety and effectiveness of biodegradable stents in the management of benign anastomotic biliary strictures. Materials and Methods: This retrospective study included all consecutive adult patients who underwent percutaneous biodegradable stent insertion for benign anastomotic biliary strictures that were refractory to cholangioplasty or biliary drainage-dependent or preferred stent placement to avoid long-term tube dependence. Fourteen stents were used in 12 patients (9 males) with a mean age of 53 years (range: 23–72 years). Ten patients had liver transplant (7 – choledochocholedochal anastomosis and 3 – hepaticojejunal anastomosis). Two patients had primary sclerosing cholangitis with hepaticojejunal anastomosis. The mean time since surgery was 5.5 years (6 months–16 years). Ten patients had an average of three (range: 1–6) previous sessions of biliary dilatation. Two patients initially preferred stent placement to avoid long-term tube dependence. Results: Technical and clinical success was achieved in all cases. One patient died 2 months after stent insertion because of progressive liver cirrhosis. No re-intervention was required in 8 (72%) of the remaining 11 patients at a mean follow-up time of 234 days (96–539 days). Three liver transplant patients required re-intervention at a mean time of 287 days. There were one severe procedure-related complication (cholangitis and sepsis) and one mild complication (transient septicemia). Stent migration into the bowel occurred in one case a few days after insertion, but this required no re-intervention. No procedure-related mortality occurred. Conclusion: Biodegradable biliary stent may offer a safe and effective option to avoid tube dependence in patients with benign anastomotic biliary strictures
    corecore